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a b s t r a c t

Benznidazole (BZL) is one of the two therapeutic agents used for the treatment of Chagas’ disease. However,
the use of BZL in most pharmaceutical preparations and research experiments is still limited due to
its low water solubility (0.4 mg/mL). To overcome the dissolution rate-limiting step in oral absorption,
chitosan microparticles prepared by the coacervation method were chosen, owing to non-toxicity of the
polymer and mild conditions of the method. The influence of process parameters such as encapsulation
efficiency, size, yield, and dissolution rate was optimized by using artificial neural networks (ANNs).
eywords:
enznidazole
hagas’ disease
hitosan
icroparticles

The optimal conditions were found to be 1.5% (w/v) for the polymer concentration, 6.0% (w/v) for the
coacervation agent concentration, 1400.0 rpm for the stirring rate, and 5.0 mL/min for the spraying rate.
Confirmation experiments showed good agreement between predicted and experimental values of the
optimized properties. These results indicate that ANNs is a valuable tool for the development of optimized
BZL chitosan microparticles. To our knowledge it is the first report based on the development of optimized
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BZL microparticles.

. Introduction

The group of tropical infectious diseases that are prevalent
n the world’s least developed nations are known as neglected
iseases (Beyrer et al., 2006). Among them, Chagas’ disease,
aused by the intracellular protozoan parasite Trypanosoma cruzi,
ffects an estimated 20 million people in Latin America, with
nother 40 million at risk of acquiring the infection (World Health
rganization, 2002). It is characterized by an acute phase with
etectable parasitemia and acute myocarditis in 8% of cases and
long-lasting chronic phase in which most infected people remain
symptomatic (Cuellar et al., 2003; Bustamante et al., 2007). Cha-

as’ disease is also an emerging opportunistic infection among
mmunocompetent patients (Cordova et al., 1992). In addition, it
as reported recently a dissemination of this parasitic disease

hrough contaminated blood transfusions in North America, and
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urope (Leiby et al., 2002). Although many efforts have been car-
ied out in order to develop new strategies to reduce or minimize
he morbidity and mortality associated with Chagas’ disease, to
ate a novel and successful chemotherapy for the treatment is

acking.
BZL liposomal formulations prepared by mixing a solution of

ipids in chloroform–methanol and BZL dissolved in dimethylsul-
oxide or in a mixture of chloroform, methanol and water were
escribed (Morilla et al., 2002). Despite the frequent use of these
olvents for liposomal formulations, there is some concern espe-
ially in the case of chloroform, a carcinogenic agent (Ran and
alkowsky, 2003). Later, it was found that, BZL delivery was not
reatly increased after incorporation in these liposomes (Morilla et
l., 2004).

Recently, our group developed oral and parenteral formulations
f BZL, using non-toxic co-solvents systems. It was revealed that
hese PEG 400-based systems were able to increase the BZL solubil-
ty up to 10 mg/mL and exhibited an excellent trypanocide activity
Lamas et al., 2006). To the best of our knowledge, no additional BZL
ormulations have been developed. Thus, an urgent need exists for

he design and development of safe and effective delivery systems
or BZL, aimed at reducing the administered dose to improve the
bsorption (Mizoe et al., 2007).

Preparation and optimization of chitosan (CH) microparticulate
ystems prepared by coacervation method was analyzed employing

http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:mlamas@fbioyf.unr.edu.ar
mailto:aolivier@fbioyf.unr.edu.ar
dx.doi.org/10.1016/j.ijpharm.2008.09.036


D. Leonardi et al. / International Journal of Pharmaceutics 367 (2009) 140–147 141

Table 1
Plackett–Burman design build for factor selection.

Experiments Factorsa Responsesb

PC (%, w/v) NaOH (%, w/v) SR (rpm) SPR (mL/min) S (�m) M Y (%) EE (%) Dr (Q30) (%)

1 0.30 3.00 1000.00 15.00 200 1 80 63.12 82.14
2 0.30 5.00 1000.00 5.00 10 1 78 68.23 98.71
3 3.00 5.00 1000.00 15.00 400 1 75 66.39 75.87
4 0.30 5.00 200.00 15.00 300 1 78 63.24 79.15
5 3.00 3.00 1000.00 5.00 30 1 31 67.31 97.33
6 3.00 5.00 200.00 5.00 250 1 66 69.91 80.61
7 0.30 3.00 200.00 5.00 90 1 54 70.15 87.59
8 1.65 4.00 600.00 10.00 200 1 61 61.16 83.27
9 1.65 4.00 600.00 10.00 180 1 63 63.39 85.11

10 3.00 3.00 200.00 15.00 500 1 28 59.91 73.77
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a PC: polymer concentration, SR: stirring rate, NaOH: coacervation agent solution
b S: mean size, EE: encapsulation efficiency, Dr (Q30): dissolution rate, Y: yield, M

rtificial neural network (ANN) (Ya-I et al., 2007). The influence of
everal factors in the microparticle formulation was evaluated, in
rder to distinguish those which have a significant effect on four
esponses: yield, dissolution rate, encapsulation efficiency, and size
f the microparticles.

The aim of this work was to study the potential of BZL micropar-
icules for the development of fast-release systems. The absorption
f most orally administered drugs in the gastro-intestinal tract can
e related to their solubility. This parameter can be modifying by
icroencapsulation process with biocompatible polymers such as

H (Daniel-Mwanbete et al, 2004).
The dissolution profile of BZL from CH microparticules was

ompared with the pure drug. The morphology of the poly-
eric systems was studied using scanning electron microscopy

SEM). Furthermore, and X-ray powder diffraction were used to
nvestigate possible interactions between the components. Several
ormulations have been performed to confirm the optimization val-
es. Experiments showed good agreement between predicted and
xperimental values of the optimized properties of the microparti-
les.

. Materials and methods

.1. Materials

BZL was a gift from Roche Laboratory (Roche, Brazil) and CH was
upplied by Aldrich Chemical Co. (Milwaukee, WI, USA). All other
hemicals were of analytical grade.

.2. Methods

.2.1. Preparation of BZL–CH microparticles
Microparticles were prepared by the coacervation method

ionic gelation), performed according to the following procedure:
ZL (100 mg) was dissolved at room temperature in acetic acid
25 mL) and water (25 mL). A given amount of CH (0.3–3.0%, w/v)
as dispersed in the acidic solution. The resulting suspension
as stirred to allow the complete CH dissolution in the acidic
edium.
The drug–polymer solution was sprayed at several veloci-

ies (5–15 mL/min) over NaOH solutions (3.00–5.00%, w/v). All
xperiments were done at 25 ◦C, fixing a stirring time (2 h)

equired to complete the coacervation. The stirring rate was
ept stable during this procedure. Samples were washed and
entrifuged twice, and finally collected in a drying chamber
t 40 ◦C. Conditions of preparation procedure are detailed in
able 1.

2

U
m
M

ntration, SPR: spraying rate.
hology.

.2.2. Yield determination
The yield was calculated as the ratio between the experimental

eight of the product and the sum of the weights of all components

ield (%) = 100

[
Wproduct

WBZL + WCH + WNaOH

]
(1)

here Wproduct is the weight of the obtained microparticles and
BZL, WCH, and WNaOH are the weights of BZL, CH, and Na(OH)

espectively.

.2.3. Determination of BZL content in microparticles
The encapsulation efficiency (EE) has been determined by the

ollowing procedure.
Microparticles were dissolved in 0.1N HCl for 24 h, and the

mount of loaded drug was analyzed by spectrophotometric
easurements at 322 nm using a LKB-Pharmacia UV spectropho-

ometer, according to

ncapsulation efficiency (%) = 100
(

WBZL

Wt

)
(2)

here WBZL is the actual BZL content and Wt is theoretical BZL
ontent in the microparticles.

.2.4. Morphological analysis and size determination
The morphological analysis and mean diameters of the

icroparticles were determined using scanning electron
icroscopy (SEM) (Leitz SEM AMR 1600T). Samples were pre-

iously sputter-coated with a gold layer in order to make them
onductive.

.2.5. Dissolution studies
All of the BZL–CH microparticles were subjected to dissolution

ssays in an USP Standard Dissolution Apparatus (Hanson Research
R8 Plus, Chatsworth, CA, USA), equipped with a rotational pad-
le (50 rpm). The dissolution medium (900 mL of 0.1N HCl) was
aintained at 37 ◦C. A dispersion powder of microparticles con-

aining BZL was introduced into the flasks, and the time counter
as set to zero. At different time intervals, samples of 5 mL were

aken through a filter, and the amount of BZL released was deter-
ined. It was found that CH did not interfere with the assay at the
orking wavelength.
.2.6. Software
Design Expert version 7.0.3 (Stat-Ease Inc., Minneapolis, MN,

SA) was used for performing the experimental design, polyno-
ial fitting and ANOVA results. ANN training was done using the
ATLAB 7.0 Neural Network Toolbox (The Mathworks, Natick, MA,
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Fig. 1. Chemical structure of BZL.

Table 2
Values of p obtained for the different factors on the five responses.

S M EE Dr (Q30) Y

Model 0.0062 0.0000 0.1344 0.0031 0.0246
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C 0.0147 0.8625 0.0147 0.0128
R 0.0239 0.7944 0.0036 0.0662
PR 0.0019 0.0255 0.0009 0.0898
aOH 0.3772 0.3323 0.1980 0.0097

SA, 2007) while desirability calculations were performed with
n-house MATLAB 7.0 routines.

. Results and discussion

.1. Screening phase

A satisfactory microparticle formulation depends on many fac-
ors, and therefore an expanded Plackett–Burman design was built
or estimating the main factors affecting its properties (Talpur et
l., 2008). The analyzed factors were: CH concentration, NaOH con-
entration, stirring rate and spraying rate. Each of these factors was
valuated at three levels (a triplicate central point was added to
he Plackett–Burman design in order to provide higher informa-
ion content for the analysis, see Table 1). The factor ranges were
elected based on prior knowledge about the system under study.
he evaluation consisted in analyzing the responses in all the condi-
ions quoted in Table 1. It should be noticed that an excess of NaOH
s necessary to secure the microparticles formation; therefore the
aOH concentration was higher than the CH concentration in all

he experiments.

The five analyzed responses were: yield, morphology, size,

ncapsulation efficiency and micropaticle dissolution rate (based
n the Q30 value, which is defined as the drug concentration dis-
olved after 30 min). Morphology is a categorical response, and
ence values of 1 or 0 were assigned to analyze this response: a

a

b
r
o

Fig. 2. Half-normal probability plots for th
Pharmaceutics 367 (2009) 140–147

alue of 1 indicates the tendency to form microspheres, while a
alue of 0 implies a tendency to form microparticles having differ-
nt non-spherical forms (Fig. 1).

An ANOVA test was applied to the experimental data corre-
ponding to the design of Table 1, using the effect of the dummy
ariables to obtain an estimate of standard errors in the coefficients.
s a conclusion of this analysis , all factors were significant (val-
es of p < 0.05 as quoted in boldface in Table 2). The results also
evealed no significant relationship between the studied factors
nd the response M: in all cases studied the morphology corre-
ponded to quasi-spherical particles. Half-normal probability plots
or the analyzed responses were built (results obtained for disso-
ution rate (Dr), size (S), and yield (Y) are shown in Fig. 2). These
esults allowed to reach an analogous conclusion regarding the
alues collected in Table 2.

.2. Response surface design

It has been established that the studied factors had a significant
nfluence on three of the analyzed responses. Then, a systematic
ptimization procedure was carried out using response surface
ethods (RSM), in order to estimate the values of the most impor-

ant factors leading to the best compromise between maximum
issolution rate, yield and encapsulation efficiency on one hand,
nd minimum size on the other (Almeida Becerra et al., 2008).
central composite design was employed for applying the RSM,

onsisting in 27 experiments (42 = 16 two-level four-factor points,
× 2 = 8 axial points and a triplicate central point), which were
ombinations of the factors in the following ranges: 0.3–4.35% (w/v)
olymer concentration; 2–5% (w/v) Na(OH) solution concentra-
ion; 200–1400 rpm stirring rate and 5–15 mL/min spraying rate
Table 3).

However, unsatisfactory fit was achieved using this RSM
hemometric tool (Table 4). The only model which showed a non-
ignificant lack of fit was the one concerning the encapsulation
fficiency; in the remaining cases the residual errors significantly
xceeded the pure error, and therefore the models showed sig-
ificant lack of fit. Under these circumstances, it is advisable to
eek for additional mathematical models which may be more

ppropriate.

Based on these results, the optimization cannot be accomplished
y means of quadratic or cubic polynomials, because of the poor
eliability of the fitted models. An attractive alternative is the use
f artificial neural networks, a methodology which was recently

e responses S, Dr, and Y as indicated.
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Table 3
Central composite design used for the optimization of the responses.

Std Run Polymer concentration
(%, w/v)

Na(OH) solution
concentration (%, w/v)

Stirring
rate (rpm)

Spraying rate
(mL/min)

Size (�m) Yield (%) Encapsulation
efficiency (%)

Dissolution
rate (%)

19 1 1.65 2.00 600.00 10.00 30 58 61 97
1 2 0.30 3.00 200.00 5.00 80 65 70 88
2 3 3.00 3.00 200.00 5.00 140 35 55 79
7 4 0.30 5.00 1000.00 5.00 15 80 70 99
5 5 0.30 3.00 1000.00 5.00 30 77 68 95
6 6 3.00 3.00 1000.00 5.00 40 35 52 96

11 7 0.30 5.00 200.00 15.00 280 76 64 82
10 8 3.00 3.00 200.00 15.00 520 30 50 75
16 9 3.00 5.00 1000.00 15.00 410 73 65 77
8 10 3.00 5.00 1000.00 5.00 70 71 78 89

18 11 4.35 4.00 600.00 10.00 610 24 41 67
9 12 0.30 3.00 200.00 15.00 400 64 57 73

22 13 1.65 4.00 1400.00 10.00 80 62 40 87
27 14 1.65 4.00 600.00 10.00 180 60 62 85
26 15 1.65 4.00 600.00 10.00 200 65 60 81
15 16 0.30 5.00 1000.00 15.00 70 80 61 90
14 17 3.00 3.00 1000.00 15.00 100 42 30 86
12 18 3.00 5.00 200.00 15.00 180 75 56 80
17 19 1.05 4.00 600.00 10.00 120 80 63 82
13 20 0.30 3.00 1000.00 15.00 220 78 62 80
21 21 1.65 4.00 200.00 10.00 120 65 49 80
24 22 1.65 4.00 600.00 20.00 500 73 40 71
23 23 1.65 4.00 600.00 10.00 180 63 67 85
2
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5 24 1.65 4.00 600.00
3 25 0.30 5.00 200.00
0 26 1.65 6.00 600.00
4 27 3.00 5.00 200.00

mployed for the modeling of properties in multiresponse opti-
ization cases (Chegini et al., 2008).

.2.1. Artificial neural networks
Artificial neural networks are mathematical models having the

bility to learn the correlation between experimental data (input)

nd response (output) values by means of an iterative mechanism
f test and error (Zupan and Gasteiger, 1999). Neural networks
re composed of basic units called neurons or nodes distributed
n different layers. In this work, a neural network involving three
ayers was employed: input, hidden and output layer (Fig. 3). The

o
n
e
a

able 4
nalysis of variance (ANOVA).

ource Sum of squares DF

ize
Residual 392,550 22
Lack of fit 392,150 19
Pure error 400 3

Total correlation 709,516 26

ield
Residual 1,080 16
Lack of fit 1,062 13
Pure error 18 3

Total correlation 6,528 26

ncapsulation efficiency
Residual 1,553 22
Lack of fit 1,520 19
Pure error 32 3

Total correlation 3,110 26

issolution rate
Residual 834 22
Lack of fit 823 19
Pure error 11 3

Total correlation 1,758 26
10.00 200 60 60 83
5.00 400 61 66 70

10.00 120 63 62 80
5.00 270 64 67 78

utput layer was designed with four neurons, corresponding to
he size, encapsulation efficiency, yield and dissolution rates. The
nputs were the polymer concentration, the NaOH concentration,
he stirring rate and the spraying rate. A multiresponse optimiza-
ion was then applied to obtain minimum size, and maximum yield,
ncapsulation efficiency and dissolution rate.
As in the nervous system, each artificial neuron receives the
utput from the previous neurons, and each connection between
eurons carries an assigned weight. For the network training, the
xperimental data (X) were entered into the input layer, and prop-
gated through the network. Each neuron of the hidden layer

Mean square F value Prob > F

17843
154.8 0.0007 significant20639

133

67
13.6 0.027 significant81

6

70
7.3 0.063 not significant80

11

38
11.8 0.032 significant43

3.7
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Fig. 3. Neural networks involving th

eceived and added the outputs from all of the neurons in the input
ayer. After that, the resulting summation was analyzed through a
ransfer function, the output for the jth neuron in the hidden layer
yj) equals to

j = 1
1 + enetj

(3)

here netj is the net input to the jth neuron in the hidden layer,
hich is given by the expression

etj =
n∑

i=1

wjixi (4)

here n is the number of neurons in the input layer, wjt is the con-
ection weight from the ith neuron in the input layer to the jth
euron in the hidden layer and xi is the input to the ith neuron in
he input layer.

For both the input and hidden layers, two bias neurons were
sed; these neurons are connected to all the neurons in the next

ayer, but none in the previous layer and they always emit 1. Thus,
he weights connected to the bias neuron are added directly to the
ombined sum of the remaining weights. During the network train-
ng, a back-propagation learning algorithm was used to compute
he weights. The error between the output vector of the network
outcalc) and the experimental vector (outexp) was calculated, and
hen all weights were corrected throughout the entire network
rom the last layer to the first one. After weight correction, the
rocedure was repeated until an acceptable error was reached.
he error was calculated as the root mean square error of training
RMSET), according to

MSET =

√∑
(outcalc − outexp)2

I
(5)

here I is the total number of responses.
.2.2. Bayesian regularization
The overtraining problem is quite common in the field of ANN,

nd is related to the number of network training cycles: after a cer-
ain number of cycles, the network may model not only the useful
ignal, but also the background noise (Sjöberg, 1995). This problem

w
n
a
i
w

ers: input, hidden and output layer.

as been previously discussed in several works, and various propos-
ls exist in order to solve it, employing different techniques such as
ayesian regularization, early stopping, optimal brain damage, and
ptimal brain surgeon (Pedersen and Hansen, 1994; Sjöberg and
jung, 1992; Le Cun et al., 1990; Hassibi and Stork, 1993).

In this work, we have selected Bayesian regularization to avoid
he overtraining problem, because this technique allows one to
rain the network model using the entire training set of objects.
his is useful in view of the fact that the training set has a specific
tatistical design, hence it is not advisable to remove samples to be
sed as an independent monitoring set, as is regularly done in early
topping. Regularization aims at minimizing a combination of the
quare error and the sum of network weights

SEreg = � MSE + (1 − �)MSW (6)

here MSEreg is the regularized mean square error, MSE is the
quare of the RMSET value commented above, MSW is the mean
um of squares of all network weights, and � is the so-called
egularization parameter. In Bayesian regularization, the weights
nd biases of the network are assumed to be random variables
ith specified distributions, while the regularization parame-

er is related to the variance associated with these distributions
Pedersen and Hansen, 1994). Using MSEreg as performance func-
ion causes the network to have smaller weights and biases, and
hese forces the model response to be smoother and less likely to
verfit.

The present network was trained for the studied properties
sing the experimental design of Table 3 as input signals, and the
alues of size, encapsulation efficiency, yield and dissolution rate
s output values. The number of neurons in the hidden layer was
elected based on the results obtained on RMSET values and the
umber of effective parameters of the net (Pedersen and Hansen,
994).

Table 5 showed that these two latter parameters tend to stabilize
eyond 10 hidden neurons, and therefore this latter number was
ubsequently employed. Training a Bayesian regularization net-

ork with this architecture (i.e., 4 input, 10 hidden and 4 output
eurons) leads to an overall RMSET value of 0.25 units (after scaling
ll input and output variables to be in the range from −1 to 1). The
ndividual RMSET values for each of the four analyzed responses

ere all satisfactory: 0.16, 0.32, 0.26 and 0.26 for size, encapsula-
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Table 5
RMSET and number of parameters when training several ANNs with different num-
bers of hidden neurons.

Neurons in the
hidden layer

RMSETa Effective parameters Total parameters

2 1.6 18 22
4 1.1 35 40
6 0.8 45 58
8 0.4 64 76

10 0.25 76 94
12 0.25 80 112
14 0.25 82 130

r

t
w

3

s
t
n
c
(

a The RMSET values given in this table refer to the overall RMSET for all four
esponses, after scaling all variables in the range from −1 to 1.

d
d
r
b

Fig. 4. Response surface plots of pairs of factors (PC/SR; SPR/PC; Na(OH) w/v/SPR; PC/N
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ion efficiency, yield and dissolution rate respectively. These results
ere attained after 220 training cycles.

.2.3. Multiple response optimization
When a simple response is being analyzed, the model analy-

is indicates areas in the design region where the system is likely
o give desirable results. However, when several responses are
eeded to be simultaneously optimized, the desirability function
an be employed, which is a function of more than one response
Espinoza-Escalante et al., 2007; Vera Candioti et al., 2006).
The desirability function intends to include the priorities and
esires of the researcher when building the optimization proce-
ure. The procedure involves creating a function for each individual
esponse (di) and finally obtaining a global function D that should
e maximized, choosing the best conditions of the designed vari-

a(OH) w/v; Na(OH) w/v/SR) with the remaining ones at their optimum values.
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Table 6
Comparison between expected and experimental values obtained with optimized
conditions.

Response Predicted value Experimental value

Size 17.0 8.5
E
Y
D
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ncapsulation efficiency 78.8 79.1
ield 76.8 78.0
issolution rate (Q30) 98.6 98.5

bles. The function D ranges from 0 (value totally undesirable) to
(all responses are in a desirable range simultaneously) and is

efined by Eq. (7), where d1, d2 ,. . ., dN corresponds to the individual
esirability function for each response being optimized

=
[

N∏
n=1

(dn)wn

]1/
∑N

n=1
wn

(7)

here wn is a weight which controls the relative importance of each
f the analyzed factors. In the present work, all weights were set to
nity, and hence a simplified version of Eq. (7) was employed

=
[

N∏
n=1

dn

]1/N

(8)

Four responses, as suggested by the analysis of the effect dis-
ussed above, were simultaneously optimized: minimum size and
aximum dissolution rate, encapsulation efficiency and yield are

esirable. After the optimization procedure was carried out, and
dequate models were found for each of these responses, a response

urface for the each desirability function was built as a function
f the influencing responses S, EE, Y and Dr. Fig. 4 shows the sur-
ace of D as a function of selected pairs of factors. The optimum D
alue was found to be 0.98, corresponding to the following values
f the influencing factors: polymer concentration, 1.5% (w/v), NaOH

i
d
i
Q
d

Fig. 5. Photographs (scanning electron microscopy) (SEM): (a) drug, (b) polymer,
Pharmaceutics 367 (2009) 140–147

oncentration, 6.0% (w/v), stirring rate, 1400.0 rpm and spraying
ate, 5.0 mL/min. The obtained value of D, ca. 98% of the best pos-
ible value for this parameter, represents an excellent compromise
mong the analyzed responses.

. Experimental verification

The optimal conditions for the preparation of microparticles
ere verified by an additional independent experiment. The opti-
al combination assayed, as given by the ANN study discussed in

he previous section, provided experimental results which were in
greement with the ANN-predicted optimum values, with differ-
nces which were on the order of the analytical measurement error
Table 5). These interesting findings provided a strong confidence
n that the applied optimization procedure was leading to reliable
alues of the factors influencing the presently studied formulation.
hey also confirmed the already known ability of artificial neu-
al networks as universal approximators to multivariate non-linear
unctions. These chemometric tools were highly valuable when tra-
itional response surface analyzed based on polynomial regression

ail to adequately model the factor–response relationship under
nvestigation (Table 6).

Some of the optimum factor values could be explained by
onsidering the physicochemical parameters of the ionic gelation
rocedure (coacervation method). For example, the concentration
f CH (PC) had a significant effect on the EE. This was ascribed
o the fact that low concentrations of PC may lead to insufficient
onic interaction to produce monolithic microparticles, and large
ores sizes permitted the drug to diffuse out during the manufac-
uring process. Higher concentrations of CH provided increasing

onic interactions and thus an increased degree of entrapment. The
rug/polymer mass ratio of the BZL-microparticles could dramat-

cally affect the drug release rate (Q30). In this particular case the
30 values are 48.51% of drug release from pure drug and 98% of
rug release from the microparticles.

and (c and d) microparticles obtained at two magnifications, as indicated.
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ig. 6. Dissolution profiles of pure BZL and microparticles in the optimal conditions.

Moreover, the NaOH concentration also affected the effective-
ess of the coacervation procedure, increasing the ionic interaction
nd modifying the pH values. High SR and SPR allowed obtaining
articles with minimum sizes, without the formation of beads.

The morphologic study of polymer, isolated drug, and obtained
icroparticles was shown in Fig. 5 by resorting to SEM analysis.

ypical micrographs for BZL–CH microparticles were presented at
wo different magnifications. As could be appreciated, the poly-

er was formed by blocks of different forms and sizes. On the
ther hand, the microparticles obtained in the optimal conditions
ad spherical shapes and a relatively uniform size, both properties
hich are highly desirable for the present formulation.

The dissolution profile for a formulation obtained in the selected
onditions was contrasted against isolated BZL without any treat-
ent (Fig. 6). As could be seen, the microparticle formulation

howed an enhanced dissolution rate for BZL in comparison with
he drug alone, confirming that the formation of microparticles
onferred improved dissolution properties to the drug.

. Conclusions

This work has demonstrated that the properties of BZL–CH
icroparticles could be greatly improved by rationally analyzing

he influence of different parameters in the formulation. The anal-
sis was composed of the following four phases: (1) screening the
nfluential factors with a Plackett–Burman design, (2) modeling the
esponses using artificial neural networks, (3) finding the optimal
onditions through desirability considerations, and (4) verifying
he optimal formulation. This methodology has been proved to
e very efficient in decreasing the particle size and increasing the
ncapsulation efficiency, yield and dissolution rate of BZL. The opti-
al combination of the microencapsulating materials was found

o be 1.5% (w/v) polymer concentration, 6.0% (w/v) NaOH solution
oncentration, 1400 rpm stirring rate and 5 mL/min spraying rate.
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