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ABSTRACT

Benznidazole (BZL)is one of the two therapeutic agents used for the treatment of Chagas’ disease. However,
the use of BZL in most pharmaceutical preparations and research experiments is still limited due to
its low water solubility (0.4 mg/mL). To overcome the dissolution rate-limiting step in oral absorption,
chitosan microparticles prepared by the coacervation method were chosen, owing to non-toxicity of the
polymer and mild conditions of the method. The influence of process parameters such as encapsulation
efficiency, size, yield, and dissolution rate was optimized by using artificial neural networks (ANNs).
The optimal conditions were found to be 1.5% (w/v) for the polymer concentration, 6.0% (w/v) for the
coacervation agent concentration, 1400.0 rpm for the stirring rate, and 5.0 mL/min for the spraying rate.
Confirmation experiments showed good agreement between predicted and experimental values of the
optimized properties. These results indicate that ANNSs is a valuable tool for the development of optimized
BZL chitosan microparticles. To our knowledge it is the first report based on the development of optimized
BZL microparticles.

Artificial neural networks

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The group of tropical infectious diseases that are prevalent
in the world’s least developed nations are known as neglected
diseases (Beyrer et al., 2006). Among them, Chagas’ disease,
caused by the intracellular protozoan parasite Trypanosoma cruzi,
affects an estimated 20 million people in Latin America, with
another 40 million at risk of acquiring the infection (World Health
Organization, 2002). It is characterized by an acute phase with
detectable parasitemia and acute myocarditis in 8% of cases and
a long-lasting chronic phase in which most infected people remain
asymptomatic (Cuellar et al., 2003; Bustamante et al., 2007). Cha-
gas’ disease is also an emerging opportunistic infection among
immunocompetent patients (Cordova et al., 1992). In addition, it
was reported recently a dissemination of this parasitic disease
through contaminated blood transfusions in North America, and
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Europe (Leiby et al., 2002). Although many efforts have been car-
ried out in order to develop new strategies to reduce or minimize
the morbidity and mortality associated with Chagas’ disease, to
date a novel and successful chemotherapy for the treatment is
lacking.

BZL liposomal formulations prepared by mixing a solution of
lipids in chloroform-methanol and BZL dissolved in dimethylsul-
foxide or in a mixture of chloroform, methanol and water were
described (Morilla et al., 2002). Despite the frequent use of these
solvents for liposomal formulations, there is some concern espe-
cially in the case of chloroform, a carcinogenic agent (Ran and
Yalkowsky, 2003). Later, it was found that, BZL delivery was not
greatly increased after incorporation in these liposomes (Morilla et
al.,, 2004).

Recently, our group developed oral and parenteral formulations
of BZL, using non-toxic co-solvents systems. It was revealed that
these PEG 400-based systems were able to increase the BZL solubil-
ity up to 10 mg/mL and exhibited an excellent trypanocide activity
(Lamas et al., 2006). To the best of our knowledge, no additional BZL
formulations have been developed. Thus, an urgent need exists for
the design and development of safe and effective delivery systems
for BZL, aimed at reducing the administered dose to improve the
absorption (Mizoe et al., 2007).

Preparation and optimization of chitosan (CH) microparticulate
systems prepared by coacervation method was analyzed employing
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Table 1
Plackett-Burman design build for factor selection.
Experiments Factors? ResponsesP
PC (%, w/v) NaOH (%, w/v) SR (rpm) SPR (mL/min) S (wm) M Y (%) EE (%) D; (Q30) (%)
1 0.30 3.00 1000.00 15.00 200 1 80 63.12 82.14
2 0.30 5.00 1000.00 5.00 10 1 78 68.23 98.71
3 3.00 5.00 1000.00 15.00 400 1 75 66.39 75.87
4 0.30 5.00 200.00 15.00 300 1 78 63.24 79.15
5 3.00 3.00 1000.00 5.00 30 1 31 67.31 97.33
6 3.00 5.00 200.00 5.00 250 1 66 69.91 80.61
7 0.30 3.00 200.00 5.00 90 1 54 70.15 87.59
8 1.65 4.00 600.00 10.00 200 1 61 61.16 83.27
9 1.65 4.00 600.00 10.00 180 1 63 63.39 85.11
10 3.00 3.00 200.00 15.00 500 1 28 59.91 73.77

2 PC: polymer concentration, SR: stirring rate, NaOH: coacervation agent solution concentration, SPR: spraying rate.
b S: mean size, EE: encapsulation efficiency, D; (Qso): dissolution rate, Y: yield, M: morphology.

artificial neural network (ANN) (Ya-I et al., 2007). The influence of
several factors in the microparticle formulation was evaluated, in
order to distinguish those which have a significant effect on four
responses: yield, dissolution rate, encapsulation efficiency, and size
of the microparticles.

The aim of this work was to study the potential of BZL micropar-
ticules for the development of fast-release systems. The absorption
of most orally administered drugs in the gastro-intestinal tract can
be related to their solubility. This parameter can be modifying by
microencapsulation process with biocompatible polymers such as
CH (Daniel-Mwanbete et al, 2004).

The dissolution profile of BZL from CH microparticules was
compared with the pure drug. The morphology of the poly-
meric systems was studied using scanning electron microscopy
(SEM). Furthermore, and X-ray powder diffraction were used to
investigate possible interactions between the components. Several
formulations have been performed to confirm the optimization val-
ues. Experiments showed good agreement between predicted and
experimental values of the optimized properties of the microparti-
cles.

2. Materials and methods
2.1. Materials

BZL was a gift from Roche Laboratory (Roche, Brazil) and CH was
supplied by Aldrich Chemical Co. (Milwaukee, WI, USA). All other
chemicals were of analytical grade.

2.2. Methods

2.2.1. Preparation of BZL-CH microparticles

Microparticles were prepared by the coacervation method
(ionic gelation), performed according to the following procedure:
BZL (100mg) was dissolved at room temperature in acetic acid
(25mL) and water (25 mL). A given amount of CH (0.3-3.0%, w/v)
was dispersed in the acidic solution. The resulting suspension
was stirred to allow the complete CH dissolution in the acidic
medium.

The drug-polymer solution was sprayed at several veloci-
ties (5-15mL/min) over NaOH solutions (3.00-5.00%, w/v). All
experiments were done at 25°C, fixing a stirring time (2h)
required to complete the coacervation. The stirring rate was
kept stable during this procedure. Samples were washed and
centrifuged twice, and finally collected in a drying chamber
at 40°C. Conditions of preparation procedure are detailed in
Table 1.

2.2.2. Yield determination
The yield was calculated as the ratio between the experimental
weight of the product and the sum of the weights of all components

Wproduct

ield (%) = 100
vield (%) WgzL + Wen + Wnaon

(1)

where Woqyce 1S the weight of the obtained microparticles and
WazL, Wen, and Wyaon are the weights of BZL, CH, and Na(OH)
respectively.

2.2.3. Determination of BZL content in microparticles

The encapsulation efficiency (EE) has been determined by the
following procedure.

Microparticles were dissolved in 0.IN HCl for 24 h, and the
amount of loaded drug was analyzed by spectrophotometric
measurements at 322 nm using a LKB-Pharmacia UV spectropho-
tometer, according to

encapsulation efficiency (%) = 100 (WBZL) (2)

W

where Wgz is the actual BZL content and W; is theoretical BZL
content in the microparticles.

2.2.4. Morphological analysis and size determination

The morphological analysis and mean diameters of the
microparticles were determined wusing scanning electron
microscopy (SEM) (Leitz SEM AMR 1600T). Samples were pre-
viously sputter-coated with a gold layer in order to make them
conductive.

2.2.5. Dissolution studies

All of the BZL-CH microparticles were subjected to dissolution
assays in an USP Standard Dissolution Apparatus (Hanson Research
SR8 Plus, Chatsworth, CA, USA), equipped with a rotational pad-
dle (50rpm). The dissolution medium (900 mL of 0.IN HCl) was
maintained at 37°C. A dispersion powder of microparticles con-
taining BZL was introduced into the flasks, and the time counter
was set to zero. At different time intervals, samples of 5 mL were
taken through a filter, and the amount of BZL released was deter-
mined. It was found that CH did not interfere with the assay at the
working wavelength.

2.2.6. Software

Design Expert version 7.0.3 (Stat-Ease Inc., Minneapolis, MN,
USA) was used for performing the experimental design, polyno-
mial fitting and ANOVA results. ANN training was done using the
MATLAB 7.0 Neural Network Toolbox (The Mathworks, Natick, MA,
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Fig. 1. Chemical structure of BZL.

Table 2
Values of p obtained for the different factors on the five responses.
S M EE D (Q30) Y

Model 0.0062 0.0000 0.1344 0.0031 0.0246
PC 0.0147 0.8625 0.0147 0.0128
SR 0.0239 0.7944 0.0036 0.0662
SPR 0.0019 0.0255 0.0009 0.0898
NaOH 0.3772 0.3323 0.1980 0.0097

USA, 2007) while desirability calculations were performed with
in-house MATLAB 7.0 routines.

3. Results and discussion
3.1. Screening phase

A satisfactory microparticle formulation depends on many fac-
tors, and therefore an expanded Plackett—-Burman design was built
for estimating the main factors affecting its properties (Talpur et
al.,, 2008). The analyzed factors were: CH concentration, NaOH con-
centration, stirring rate and spraying rate. Each of these factors was
evaluated at three levels (a triplicate central point was added to
the Plackett-Burman design in order to provide higher informa-
tion content for the analysis, see Table 1). The factor ranges were
selected based on prior knowledge about the system under study.
The evaluation consisted in analyzing the responses in all the condi-
tions quoted in Table 1. It should be noticed that an excess of NaOH
is necessary to secure the microparticles formation; therefore the
NaOH concentration was higher than the CH concentration in all
the experiments.

The five analyzed responses were: yield, morphology, size,
encapsulation efficiency and micropaticle dissolution rate (based
on the Q3q value, which is defined as the drug concentration dis-
solved after 30 min). Morphology is a categorical response, and
hence values of 1 or 0 were assigned to analyze this response: a

value of 1 indicates the tendency to form microspheres, while a
value of 0 implies a tendency to form microparticles having differ-
ent non-spherical forms (Fig. 1).

An ANOVA test was applied to the experimental data corre-
sponding to the design of Table 1, using the effect of the dummy
variables to obtain an estimate of standard errors in the coefficients.
As a conclusion of this analysis , all factors were significant (val-
ues of p<0.05 as quoted in boldface in Table 2). The results also
revealed no significant relationship between the studied factors
and the response M: in all cases studied the morphology corre-
sponded to quasi-spherical particles. Half-normal probability plots
for the analyzed responses were built (results obtained for disso-
lution rate (Dy), size (S), and yield (Y) are shown in Fig. 2). These
results allowed to reach an analogous conclusion regarding the
values collected in Table 2.

3.2. Response surface design

It has been established that the studied factors had a significant
influence on three of the analyzed responses. Then, a systematic
optimization procedure was carried out using response surface
methods (RSM), in order to estimate the values of the most impor-
tant factors leading to the best compromise between maximum
dissolution rate, yield and encapsulation efficiency on one hand,
and minimum size on the other (Almeida Becerra et al., 2008).
A central composite design was employed for applying the RSM,
consisting in 27 experiments (42 = 16 two-level four-factor points,
4 x 2=8 axial points and a triplicate central point), which were
combinations of the factors in the following ranges: 0.3-4.35% (w/v)
polymer concentration; 2-5% (w/v) Na(OH) solution concentra-
tion; 200-1400 rpm stirring rate and 5-15 mL/min spraying rate
(Table 3).

However, unsatisfactory fit was achieved using this RSM
chemometric tool (Table 4). The only model which showed a non-
significant lack of fit was the one concerning the encapsulation
efficiency; in the remaining cases the residual errors significantly
exceeded the pure error, and therefore the models showed sig-
nificant lack of fit. Under these circumstances, it is advisable to
seek for additional mathematical models which may be more
appropriate.

Based on these results, the optimization cannot be accomplished
by means of quadratic or cubic polynomials, because of the poor
reliability of the fitted models. An attractive alternative is the use
of artificial neural networks, a methodology which was recently
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Fig. 2. Half-normal probability plots for the responses S, Dr, and Y as indicated.
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Table 3
Central composite design used for the optimization of the responses.
Std Run Polymer concentration Na(OH) solution Stirring Spraying rate Size (um) Yield (%) Encapsulation Dissolution
(%, wlv) concentration (%, w/v) rate (rpm) (mL/min) efficiency (%) rate (%)
19 1 1.65 2.00 600.00 10.00 30 58 61 97
1 2 0.30 3.00 200.00 5.00 80 65 70 88
2 3 3.00 3.00 200.00 5.00 140 35 55 79
7 4 0.30 5.00 1000.00 5.00 15 80 70 99
5 5 0.30 3.00 1000.00 5.00 30 77 68 95
6 6 3.00 3.00 1000.00 5.00 40 35 52 96
11 7 0.30 5.00 200.00 15.00 280 76 64 82
10 8 3.00 3.00 200.00 15.00 520 30 50 75
16 9 3.00 5.00 1000.00 15.00 410 73 65 77
8 10 3.00 5.00 1000.00 5.00 70 71 78 89
18 11 435 4.00 600.00 10.00 610 24 41 67
9 12 0.30 3.00 200.00 15.00 400 64 57 73
22 13 1.65 4.00 1400.00 10.00 80 62 40 87
27 14 1.65 4.00 600.00 10.00 180 60 62 85
26 15 1.65 4.00 600.00 10.00 200 65 60 81
15 16 0.30 5.00 1000.00 15.00 70 80 61 90
14 17 3.00 3.00 1000.00 15.00 100 42 30 86
12 18 3.00 5.00 200.00 15.00 180 75 56 80
17 19 1.05 4.00 600.00 10.00 120 80 63 82
13 20 0.30 3.00 1000.00 15.00 220 78 62 80
21 21 1.65 4.00 200.00 10.00 120 65 49 80
24 22 1.65 4.00 600.00 20.00 500 73 40 71
23 23 1.65 4.00 600.00 10.00 180 63 67 85
25 24 1.65 4.00 600.00 10.00 200 60 60 83
3 25 0.30 5.00 200.00 5.00 400 61 66 70
20 26 1.65 6.00 600.00 10.00 120 63 62 80
4 27 3.00 5.00 200.00 5.00 270 64 67 78

employed for the modeling of properties in multiresponse opti-
mization cases (Chegini et al., 2008).

3.2.1. Artificial neural networks

Artificial neural networks are mathematical models having the
ability to learn the correlation between experimental data (input)
and response (output) values by means of an iterative mechanism
of test and error (Zupan and Gasteiger, 1999). Neural networks
are composed of basic units called neurons or nodes distributed
in different layers. In this work, a neural network involving three
layers was employed: input, hidden and output layer (Fig. 3). The

output layer was designed with four neurons, corresponding to
the size, encapsulation efficiency, yield and dissolution rates. The
inputs were the polymer concentration, the NaOH concentration,
the stirring rate and the spraying rate. A multiresponse optimiza-
tion was then applied to obtain minimum size, and maximum yield,
encapsulation efficiency and dissolution rate.

As in the nervous system, each artificial neuron receives the
output from the previous neurons, and each connection between
neurons carries an assigned weight. For the network training, the
experimental data (X) were entered into the input layer, and prop-
agated through the network. Each neuron of the hidden layer

Table 4
Analysis of variance (ANOVA).
Source Sum of squares DF Mean square Fvalue Prob>F
Size
Residual 392,550 22 17843
Lack of fit 392,150 19 20639 154.8 0.0007 significant
Pure error 400 3 133
Total correlation 709,516 26
Yield
Residual 1,080 16 67
Lack of fit 1,062 13 81 13.6 0.027 significant
Pure error 18 3 6
Total correlation 6,528 26
Encapsulation efficiency
Residual 1,553 22 70
Lack of fit 1,520 19 80 73 0.063 not significant
Pure error 32 3 11
Total correlation 3,110 26
Dissolution rate
Residual 834 22 38
Lack of fit 823 19 43 11.8 0.032 significant
Pure error 11 3 3.7
Total correlation 1,758 26
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Fig. 3. Neural networks involving three layers: input, hidden and output layer.

received and added the outputs from all of the neurons in the input
layer. After that, the resulting summation was analyzed through a
transfer function, the output for the jth neuron in the hidden layer
(y;) equals to

_ 1
T Trend

Yj (3)
where net; is the net input to the jth neuron in the hidden layer,
which is given by the expression

n
netj = Zwﬁxi (4)
i=1

where n is the number of neurons in the input layer, wj; is the con-
nection weight from the ith neuron in the input layer to the jth
neuron in the hidden layer and ¥; is the input to the ith neuron in
the input layer.

For both the input and hidden layers, two bias neurons were
used; these neurons are connected to all the neurons in the next
layer, but none in the previous layer and they always emit 1. Thus,
the weights connected to the bias neuron are added directly to the
combined sum of the remaining weights. During the network train-
ing, a back-propagation learning algorithm was used to compute
the weights. The error between the output vector of the network
(outcqc) and the experimental vector (outexp) was calculated, and
then all weights were corrected throughout the entire network
from the last layer to the first one. After weight correction, the
procedure was repeated until an acceptable error was reached.
The error was calculated as the root mean square error of training
(RMSET), according to

2
\/Z (outcqc — Outexp)

I

where [ is the total number of responses.

RMSET =

3.2.2. Bayesian regularization

The overtraining problem is quite common in the field of ANN,
and is related to the number of network training cycles: after a cer-
tain number of cycles, the network may model not only the useful
signal, but also the background noise (Sjoéberg, 1995). This problem

has been previously discussed in several works, and various propos-
als exist in order to solve it, employing different techniques such as
Bayesian regularization, early stopping, optimal brain damage, and
optimal brain surgeon (Pedersen and Hansen, 1994; Sjoberg and
Ljung, 1992; Le Cun et al., 1990; Hassibi and Stork, 1993).

In this work, we have selected Bayesian regularization to avoid
the overtraining problem, because this technique allows one to
train the network model using the entire training set of objects.
This is useful in view of the fact that the training set has a specific
statistical design, hence it is not advisable to remove samples to be
used as an independent monitoring set, as is regularly done in early
stopping. Regularization aims at minimizing a combination of the
square error and the sum of network weights

MSEreg = y MSE + (1 — y)MSW (6)

where MSE;eg is the regularized mean square error, MSE is the
square of the RMSET value commented above, MSW is the mean
sum of squares of all network weights, and y is the so-called
regularization parameter. In Bayesian regularization, the weights
and biases of the network are assumed to be random variables
with specified distributions, while the regularization parame-
ter is related to the variance associated with these distributions
(Pedersen and Hansen, 1994). Using MSE;eg as performance func-
tion causes the network to have smaller weights and biases, and
these forces the model response to be smoother and less likely to
overfit.

The present network was trained for the studied properties
using the experimental design of Table 3 as input signals, and the
values of size, encapsulation efficiency, yield and dissolution rate
as output values. The number of neurons in the hidden layer was
selected based on the results obtained on RMSET values and the
number of effective parameters of the net (Pedersen and Hansen,
1994).

Table 5 showed that these two latter parameters tend to stabilize
beyond 10 hidden neurons, and therefore this latter number was
subsequently employed. Training a Bayesian regularization net-
work with this architecture (i.e., 4 input, 10 hidden and 4 output
neurons) leads to an overall RMSET value of 0.25 units (after scaling
all input and output variables to be in the range from —1 to 1). The
individual RMSET values for each of the four analyzed responses
were all satisfactory: 0.16, 0.32, 0.26 and 0.26 for size, encapsula-
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Table 5
RMSET and number of parameters when training several ANNs with different num-
bers of hidden neurons.

Neurons in the RMSET? Effective parameters Total parameters
hidden layer
2 1.6 18 22
4 1.1 35 40
6 0.8 45 58
8 0.4 64 76
10 0.25 76 94
12 0.25 80 112
14 0.25 82 130

2 The RMSET values given in this table refer to the overall RMSET for all four
responses, after scaling all variables in the range from —1 to 1.

SPR (mLimin)

PC (%lwiv) 03020

Na(OH) (%wiv)

tion efficiency, yield and dissolution rate respectively. These results
were attained after 220 training cycles.

3.2.3. Multiple response optimization

When a simple response is being analyzed, the model analy-
sis indicates areas in the design region where the system is likely
to give desirable results. However, when several responses are
needed to be simultaneously optimized, the desirability function
can be employed, which is a function of more than one response
(Espinoza-Escalante et al., 2007; Vera Candioti et al., 2006).

The desirability function intends to include the priorities and
desires of the researcher when building the optimization proce-
dure. The procedure involves creating a function for each individual
response (d;) and finally obtaining a global function D that should
be maximized, choosing the best conditions of the designed vari-

1400

PC (%wiv) 030200 SR (rpm)

WY
SRR
8 NN\
=S :""I %’,I,;,?;.‘ Q}:}?‘\“\Q‘\}«\ {
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20 200
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Fig. 4. Response surface plots of pairs of factors (PC/SR; SPR/PC; Na(OH) w/v/SPR; PC/Na(OH) w/v; Na(OH) w/v/SR) with the remaining ones at their optimum values.
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Table 6
Comparison between expected and experimental values obtained with optimized
conditions.

Response Predicted value Experimental value
Size 17.0 8.5
Encapsulation efficiency 78.8 79.1
Yield 76.8 78.0
Dissolution rate (Qsp) 98.6 98.5

ables. The function D ranges from 0 (value totally undesirable) to
1 (all responses are in a desirable range simultaneously) and is
defined by Eq.(7), whered;,d;,. . .,dy corresponds to the individual
desirability function for each response being optimized

N I/Z:l:lwn
D= | Jan™ ™)

n=1

where wy, is a weight which controls the relative importance of each
of the analyzed factors. In the present work, all weights were set to
unity, and hence a simplified version of Eq. (7) was employed

N 1/N
D= Hd” (8)
n=1

Four responses, as suggested by the analysis of the effect dis-
cussed above, were simultaneously optimized: minimum size and
maximum dissolution rate, encapsulation efficiency and yield are
desirable. After the optimization procedure was carried out, and
adequate models were found for each of these responses, aresponse
surface for the each desirability function was built as a function
of the influencing responses S, EE, Y and D. Fig. 4 shows the sur-
face of D as a function of selected pairs of factors. The optimum D
value was found to be 0.98, corresponding to the following values
of the influencing factors: polymer concentration, 1.5% (w/v), NaOH

———
K218 1@l @313

concentration, 6.0% (w/v), stirring rate, 1400.0 rpm and spraying
rate, 5.0 mL/min. The obtained value of D, ca. 98% of the best pos-
sible value for this parameter, represents an excellent compromise
among the analyzed responses.

4. Experimental verification

The optimal conditions for the preparation of microparticles
were verified by an additional independent experiment. The opti-
mal combination assayed, as given by the ANN study discussed in
the previous section, provided experimental results which were in
agreement with the ANN-predicted optimum values, with differ-
ences which were on the order of the analytical measurement error
(Table 5). These interesting findings provided a strong confidence
in that the applied optimization procedure was leading to reliable
values of the factors influencing the presently studied formulation.
They also confirmed the already known ability of artificial neu-
ral networks as universal approximators to multivariate non-linear
functions. These chemometric tools were highly valuable when tra-
ditional response surface analyzed based on polynomial regression
fail to adequately model the factor-response relationship under
investigation (Table 6).

Some of the optimum factor values could be explained by
considering the physicochemical parameters of the ionic gelation
procedure (coacervation method). For example, the concentration
of CH (PC) had a significant effect on the EE. This was ascribed
to the fact that low concentrations of PC may lead to insufficient
ionic interaction to produce monolithic microparticles, and large
pores sizes permitted the drug to diffuse out during the manufac-
turing process. Higher concentrations of CH provided increasing
ionic interactions and thus an increased degree of entrapment. The
drug/polymer mass ratio of the BZL-microparticles could dramat-
ically affect the drug release rate (Qsg). In this particular case the
Q3o values are 48.51% of drug release from pure drug and 98% of
drug release from the microparticles.

LMF

Fig. 5. Photographs (scanning electron microscopy) (SEM): (a) drug, (b) polymer, and (¢ and d) microparticles obtained at two magnifications, as indicated.
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Fig. 6. Dissolution profiles of pure BZL and microparticles in the optimal conditions.

Moreover, the NaOH concentration also affected the effective-
ness of the coacervation procedure, increasing the ionic interaction
and modifying the pH values. High SR and SPR allowed obtaining
particles with minimum sizes, without the formation of beads.

The morphologic study of polymer, isolated drug, and obtained
microparticles was shown in Fig. 5 by resorting to SEM analysis.
Typical micrographs for BZL-CH microparticles were presented at
two different magnifications. As could be appreciated, the poly-
mer was formed by blocks of different forms and sizes. On the
other hand, the microparticles obtained in the optimal conditions
had spherical shapes and a relatively uniform size, both properties
which are highly desirable for the present formulation.

The dissolution profile for a formulation obtained in the selected
conditions was contrasted against isolated BZL without any treat-
ment (Fig. 6). As could be seen, the microparticle formulation
showed an enhanced dissolution rate for BZL in comparison with
the drug alone, confirming that the formation of microparticles
conferred improved dissolution properties to the drug.

5. Conclusions

This work has demonstrated that the properties of BZL-CH
microparticles could be greatly improved by rationally analyzing
the influence of different parameters in the formulation. The anal-
ysis was composed of the following four phases: (1) screening the
influential factors with a Plackett-Burman design, (2) modeling the
responses using artificial neural networks, (3) finding the optimal
conditions through desirability considerations, and (4) verifying
the optimal formulation. This methodology has been proved to
be very efficient in decreasing the particle size and increasing the
encapsulation efficiency, yield and dissolution rate of BZL. The opti-
mal combination of the microencapsulating materials was found
to be 1.5% (w/v) polymer concentration, 6.0% (w/v) NaOH solution
concentration, 1400 rpm stirring rate and 5 mL/min spraying rate.
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